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Abstract

In this brief note we show that whenever X is a positive random variable, if E(Xh) is defined for
h in some neighborhood of zero then the moments E(Xh) uniquely identify the distribution of X.

Key words: moment problem, identifiability of a distribution through its moments, separating func-
tions, Log-Normal distribution, F distribution.

1. INTRODUCTION
We know that if a random variable (r.v.) X has a bounded support or if it has an unbounded

support but it has a moment generating function (m.g.f.) then the set of its positive integer order
moments E(Xh), h ∈ IN , identifies uniquely such r.v.. In this latter case, its m.g.f. MX(t), being
analytic may be expressed as

MX(t) =
∞∑

i=0

ti E(Xi)/i! for t ∈ Vε,ε′(0) ,

where Vε,ε′(0) = {x : x ∈ ]− ε, ε′[, ε, ε′ > 0} represents a neighborhood of zero (Chung, 1974; Feller,
1971). For r.v.’s that although not having a m.g.f. still have positive integer moments of all orders,
despite the fact that we may think about checking for the applicability of the Carleman conditions
(Carleman, 1926) or Carleman type conditions (Akhiezer, 1965; Lin, 1997; Wu, 2002), we will be faced
with the fact that quite often the conditions for their applicability are equivalent to ask for at least
the analyticity of the characteristic function (c.f.) around t = 0 (Feller, 1971; Shiryaev, 1996) (see
Appendix A for some more details), so that we are left with the case of the r.v.’s that do not have a
c.f. that is analytic around t = 0 and/or do not have integer moments of all positive integer orders.
However, it is possible to establish that for some such variables, the set of all their moments uniquely
identify that r.v., as it is the case for example with the Log-Normal and F distributed r.v.’s. This is
the topic of this brief note.

Let us start with an example which, under some aspects, is a rather well known one. Let us
consider the sequence of r.v.’s Xn, (n ∈ IN0), with p.d.f.s (probability density functions)

fXn
(x) =

e−
1
2 (log x)2

√
2π x

{1 + α sin(2nπ log x)} , |α| ≤ 1 (1)

which for n = 0 and/or α = 0 yields the well known standard Log-Normal distribution.
It is a quite well known fact that for any n ∈ IN0,

E
(
Xh

n

)
= eh2/2 , ∀h ∈ IN0 , (2)

which is neither a function of n nor of α (see for example Feller (1971), Knight (2000) and also Casella
and Berger (2002), for the cases n = 0 and n = 1), a problem and an example actually brought to our
attention by Stieltjes himself (Stieltjes, 1894, 1895, Ch. VIII).

However, in the usual definition of E
(
Xh

)
(which using the notation of the Stieltjes integral is

defined as E
(
Xh

)
=

∫
S

xh dFX(x) for all cases where
∫

S
|x|h dFX(x) is convergent, where S is the

support of the r.v. X and FX(x) its cumulative distribution function) nothing goes against to consider
h ∈ IR and indeed we should note both that (2) is still valid for any h such that 2nh ∈ ZZ, while it is
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no longer valid for 2nh ∈ IR\ZZ. Indeed, for any h ∈ IR we have

E
(
Xh

n

)
=

∫ ∞

0

xh e−
1
2 (log x)2

√
2π x

{1 + α sin(2nπ log x)} dx

= eh2/2

∫ ∞

0

e−
1
2 (log x−h)2

√
2π x

{1+α sin(2nπ log x)} dx

︸ ︷︷ ︸
= 1+e−

1
2 (2nπ)2 α sin(2nπh)

= eh2/2
{

1 + e−
1
2 (2nπ)2α sin(2nπh)

}
,

(3)

where the details in the computation of the integral were left aside since they are a bit lengthy while
not being the key point in this brief note.

Expression (3) clearly shows that E
(
Xh

n

)
is indeed a function of both n and α, as long as 2nh 6∈ ZZ

(i.e., 2nh ∈ IR\ZZ), what is usually an overlooked detail. Moreover, in this case we may even say that
although for h ∈ ZZ, E

(
Xh

n

)
is given by (2), thus being neither a function of n nor of α, for h ∈ IR

the moments E
(
Xh

n

)
uniquely identify the distributions in (1).

Then the pertinent question is: ’Why is that and when is it the case that the moments E
(
Xh

)
,

for h ∈ C ⊆ IR, uniquely identify the distribution of X and how is the set C defined?’.

2. THE MAIN RESULTS

In simple terms, the function w(·) is said to be separating if and only if for any two c.d.f.s (cumu-
lative distribution functions) F (·) and G(·),

∫

IR

w(x) dF (x) =
∫

IR

w(x) dG(x) =⇒ F (x) = G(x), ∀x ∈ IR .

First of all let us state that, for i =
√−1, and h ∈ IR, the functions xih are always separating for the

distributions of r.v.’s with support IR+, since if the r.v. has support IR+ we may always define the
r.v. Y = log X, with

E
(
Xih

)
= E

(
eih log X

)
= E

(
eihY

)
= ΦY (h) , h ∈ IR , (4)

what shows that the moments E
(
Xih

)
, with h ∈ IR, will always exist and will uniquely identify the

distribution of X, provided that X has support IR+, since then there will be a r.v. Y = log X, which
will have c.f. ΦY (h) = E

(
Xih

)
. Then, using a similar argument and since the m.g.f. of Y , when

it exists, also uniquely identifies the distribution of Y , we may say that if MY (h) = E
(
ehY

)
exists,

similarly to (4),
MY (t) = E

(
etY

)
= E

(
et log X

)
= E

(
Xt

)
, t ∈ C ⊆ IR

so that if X is a r.v. so that the r.v. Y = log X is defined and it has a m.g.f. for t ∈ C = Vε,ε′(0),
with

Vε,ε′(0) =
{

x ∈ IR : x ∈]− ε, ε′[ ; ε, ε′ ∈ IR
+
}

where IR
+

= IR+ ∪ {+∞}, with V−∞,∞(0) = IR.
In the case of our starting example, in fact the r.v.’s Zn = log Xn have p.d.f.s

fZn
(z) =

e−z2/2

√
2π

(1 + α sin(2nπz))

with m.g.f.s given by

MZn
(t) = E

(
etZn

)
= E

(
Xt

n

)

= et2/2
(
1 + e−

1
2 (2nπ)2 α sin(2nπt)

)
, t ∈ IR

(5)
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so that the functions xt with t ∈ IR are separating for the distributions of the r.v.’s Xn and the
moments E

(
Xh

n

)
, for h ∈ IR, in this case, uniquely identify the distributions of the r.v.’s Xn, for

n ∈ IN0 (see Appendix B for some numerical issues).
Another example would be the F distribution with, say, m and n degrees of freedom. We know

that if
X ∼ Fm,n

then

E
(
Xh

)
=

Γ
(

m
2 + h

)
Γ

(
n
2 − h

)

Γ
(

m
2

)
Γ

(
n
2

)
(m

n

)h

, − m

2
< h <

n

2

where we should notice that the moments are defined for any real h in the range specified above. This
implies that the r.v. Y = log X has m.g.f.

MY (t) =
Γ

(
m
2 + t

)
Γ

(
n
2 − t

)

Γ
(

m
2

)
Γ

(
n
2

)
(m

n

)h

, − m

2
< t <

n

2

and thus the Fm,n distribution is uniquely identified by its moments of order h with −m
2 < h < n

2 . We
know that for 0 < n ≤ 2 the Fm,n distribution does not even has an expected value, but this has only
a psychological effect on us, since it is yet characterized by its moments of order −m

2 < h < n/2 ≤ 1.
A fact sometimes overlooked is that we may prove that if, for a given r.v. X, E(Xh) exists (and

is finite) for some h > 0, then it exists for any r ∈ ]0, h] and if E(Xh) exists (and is finite) for some
h < 0 then it also exists for any r ∈ [h, 0[. Indeed we may state the following result.

Theorem 1 If the r.v. X > 0 has E(Xh) defined for some h > 0 and some h < 0 then E(Xh)
characterizes uniquely this r.v. for the whole range of values of h for which these expected values are
defined.

Proof: First of all we should consider that if E
[
(g(X))h

]
exists (and is finite) for some h > 0, that

is, if ∫

S

|g(x)|h dF (x) (6)

where S is the support of the r.v., converges for some h > 0, then also
∫

S

|g(x)|r dF (x) (7)

converges for any 0 < r < h and if (6) converges for some h < 0, then also (7) converges for any
h < r < 0. In both cases we may write

E [|g(X)|r] ≤ P (|g(X)|r ≤ 1) + E
[|g(X)|h]

(< ∞) ,

since for 0 < r < h we may write

E [|g(X)|r]

=
∫

{x:|g(x)|r≤1}
|g(x)|r dF (x) +

∫

{x:|g(x)|r>1}
|g(x)|r dF (x)

≤
∫

{x:|g(x)|r≤1}
1 dF (x) +

∫

{x:|g(x)|r>1}
|g(x)|h dF (x)

≤ P [|g(X)|r ≤ 1] + E
[|g(X)|h]

(8)

while for h < r < 0 we have

|g(x)|r > 1 ⇐⇒ |g(x)|−h < |g(x)|−r < 1

⇐⇒ |g(x)|h > |g(x)|r ( > 1)
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and thus, following similar steps to the ones in (8), we have a similar result for h < r < 0.
But then we will also have for Y = log X its m.g.f. given by

MY (h) = E
[
ehY

]
= E

[
eh log X

]

= E
[
Xh

]
, h ∈ Vε,ε′(0) ,

so that in this case the r.v. Y = log X has for sure a m.g.f., being as such uniquely characterized by
E

[
ehY

]
and as such also the distribution of X = eY , being uniquely defined as a function of Y , is

also uniquely characterized by E
[
ehY

]
= E

[
Xh

]
.

3. CONCLUSIONS

As a conclusion we may say that the answer to the question ’When are the functions xh (h ∈ C ⊂
IR) separating or, equivalently, when do the moments E

(
Xh

)
(h ∈ C ⊂ IR) uniquely identify the

distribution of X and how is the set C defined?’ is:

i) whenever X has support IR+, being thus possible to define the r.v. Y = log X

ii) and, at the same time, the r.v. Y = log X has a m.g.f. MY (t) = E (Xt) for t ∈ C =]− ε, ε′[= Vε,ε′(0),
(ε, ε′ > 0), or equivalently, the r.v. X has E(Xt) defined for t ∈ C;

so that we may state that

• if X1 and X2 are two r.v.’s with support IR+ such that E
(
Xh

1

)
= E

(
Xh

2

)
for any h ∈ Vε,ε′(0),

where Vε,ε′(0) is the set of all values h for which E
(
Xh

1

)
is defined, then the r.v.’s X1 and X2

are the same (the reason being that if E
(
Xh

1

)
exists for any h ∈ Vε,ε′(0), then the m.g.f. of

Y1 = log X1 exists for any h ∈ Vε,ε′(0), since for h ∈ Vε,ε′(0)

E
(
Xh

1

)
= E

(
eh log X1

)
= E

(
ehY1

)
= MY1

(h) ,

and thus the m.g.f. of Y1 = log X1 and Y2 = log X2 are the same and thus Y1 and Y2 are
the same r.v., and thus also X1 and X2 are the same r.v. since the logarithm is a one-to-one
transformation);

or we may also just say that

• if X has support IR+ and E(Xh) is defined both for some h > 0 and some h < 0, then E(Xh),
for h ∈ C uniquely identifies the distribution of X, where C is the set of values h for which
E(Xh) is defined, or equivalently the set of values h for which M− log X(h) is defined; that is,
the expression for the moments E(Xh) uniquely identifies the r.v. X (in the same way that the
expression for MY (h), with Y = − log X, uniquely identifies the distribution of Y );

and thus we may say that

• xh, with h ∈ Vε,ε′(0), where Vε,ε′(0) is the set of all values h for which E
(
Xh

)
is defined (that

is, the set of all values h for which
∫

S
|xh| dFX(x) converges), is separating for the distributions

of r.v.’s in IR+.

As we saw, when we consider the real order moments, these moments characterize the distribution
they come from in a more insightful way then the integer order moments since, as for example Or-
tigueira et all. (2004) and Machado (2003) state, “ integer-order derivatives depend only on the local
behavior of a function, while fractional order derivatives depend on the whole history of the function”.
If we are concerned with the fact that it may seem not possible to obtain such moments from the c.f.
or the m.g.f. as we usually do with the integer order moments, we should note that we only have
to consider the real order derivatives of those functions in order to get it working and that such real
order derivatives if taken as the extension for h ∈ IR of

∂h

∂th
ΦX(t)

∣∣∣∣
t=0

= ih
∫

S

xh dFX(x) ,
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will not only agree with the usual Grünwald-Letnikov definition of non-integer order derivative (Miller
and Ross, 1993; Samko et all., 1987) as well as with other more general definitions as the Cauchy
convolutional definition of derivative in Ortigueira et all. (2004).

APPENDIX A

A brief note on the Carleman and other Carleman type conditions

The aim of this Appendix is to briefly refer the usual Carleman conditions and to briefly summarize
some of the newer Carleman type conditions obtained by some authors. For the proofs we refer the
reader to the references cited.

A stronger result than the Carleman condition is the following one, which is a slight modification
of a result presented by Billinglsley (1996, sec. 30, Theor. 30.1).

Theorem A.1 : Let X be a r.v. with µr = E(Xr) < ∞, ∀r ∈ IN . If the series

∞∑
r=1

µr tr

r!
(A.1)

has a positive radius of convergence, then the distribution of X is uniquely determined by its positive
integer order moments.

We should note that, on one hand, the lack of compliance with the hypothesis of Theorem A.1 for
a given r.v. does not imply that this r.v. is not uniquely determined by the set of its positive integer
order moments, while, on the other hand, if the series in (A.1) has a positive radius of convergence,
that is, if it is convergent for, say t < α (> 0), then the m.g.f. of the r.v. X exists, with

MX(t) = 1 +
∞∑

r=1

µr tr

r!
, (for t < α)

so that through the unicity of the m.g.f. it is established that the r.v. X is the only one with positive
integer moments νr.

The Carleman condition (Carleman, 1926) is usually referred as the result in the following Theorem.

Theorem A.2 : Let µr = E(Xr) < ∞. If

∞∑
r=1

1

µ
1/2r
2r

= +∞

then the distribution of the r.v. X is uniquely determined by its positive integer order moments.

We should note that the result in Theorem A.1, although of the same type, is indeed stronger,
since ∞∑

r=1

1

µ
1/2r
2r

= ∞ =⇒
∞∑

r=1

µ2r tr

(2r)!
has a positive
radius of convergence,

although both criteria place some restrictions on the rate of growth of the moments.
Another equivalent condition is the one presented in Theorem A.3.

Theorem A.3 : Let µ∗r = E (|X|r). If

lim sup
τ→∞

µ
′1/r
τ

< ∞

then the distribution of X is determined by its positive integer order moments.

We should note that the condition in the hypothesis of Theorem A.3 implies indeed that the c.f.
of the r.v. X has to be analytic (in any neighborhood of any t ∈ IR) (Feller, 1971, Chap. XV, sec. 4;
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Shiryaev, 1996, p295), and as such that the distribution of the r.v. X is determined by its positive
integer order moments.

A similar result to the one in Theorem A.3 is the following one.

Theorem A.4 : Let µ2r = E
(
X2r

)
. If

lim sup
r→∞

µ
1/2r
2r

2r
< ∞

then the distribution of the r.v. X is determined by its positive integer order moments.

Wu (2002) presents a pair of simple and useful results, the first of them derived from Theorem
A.1, by applying the D’Alembert criterium.

Theorem A.5 : Let X be a r.v. with E(Xr) < ∞, ∀r ∈ IN . If

lim
r→∞

1
r

∣∣∣∣
µr+1

µr

∣∣∣∣ < ∞

then the distribution of the r.v. X is uniquely determined by its positive integer order moments.

And for discrete r.v.’s, derived from Theorem A.3 above we have the following result.

Theorem A.6 : Let X be a discrete r.v. with support IN and

pk = P (X = k) ∀k ∈ IN

(and as such with
∑∞

k=1 pk = 1). If there is α ≥ 1 such that pk = O
(
e−kα

)
, that is, such that ∀k ∈ IN ,

pk/e−kα remains bounded, then the distribution of the r.v. X is uniquely determined by the set of
its positive integer order moments.

In a slightly different framework, Lin (1997) obtains four criteria which have the particularity of
giving conditions both for a distribution to be determined and not determined by its integer order
moments. The first two criteria are for r.v.’s with support IR, while the last two are for r.v.’s with
support IR+.

Theorem A.7 : Let X be a r.v. with an absolutely continuous c.d.f. and p.d.f. f(x) > 0, ∀x ∈ IR.
If E(Xr) < ∞, ∀r ∈ IN and ∫ ∞

−∞

− log f(x)
1 + x2

dx < ∞ , (A.2)

then the distribution of the r.v. X is not uniquely determined by its positive integer order moments.

Theorem A.8 : Let X be a r.v. with an absolutely continuous c.d.f. and p.d.f. f(x) > 0, ∀x ∈ IR,
symmetrical about zero and differentiable in IR, such that E(Xr) < ∞, ∀r ∈ IN , with

f(x) −→x→∞ 0 , − x
f ′(x)
f(x)

−→x→∞ ∞

and ∫ ∞

−∞

− log f(x)
1 + x2

dx = ∞ ,

then the distribution of the r.v. X is uniquely determined by its positive integer order moments.

As pointed out by Lin (1997), a sufficient condition for (A.2) to hold is that the logarithmic mean
function

g(t) =
1
2t

∫ t

−t

| log f(x)| dx (t ∈ IR)

be bounded in IR (see Paley and Wiener (1934, p128)).
Also Lin (1997) refers that while Theorem A.7 was already proved by Akhiezer (1965, p87), using

a result from Krein (1945), he proves it using the Hardy space theory. Also as Lin (1997) shows in
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the proof of Theorem A.8, its hypothesis is a necessary condition for the Carleman condition to be
satisfied.

Using the above two theorems it is possible to prove that while if X is a normally distributed
r.v., its distribution is uniquely determined by its positive integer order moments, the distributions of
X2n+1 (n ∈ IN) are not (Casella and Berger, 2002).

For r.v.’s in IR+ we have the following two theorems.

Theorem A.9 : Let X be a r.v. with an absolutely continuous c.d.f. and p.d.f. f(x) > 0, ∀x ∈ IR+

and f(x) = 0, ∀x ∈ IR−0 . If E(Xr) < ∞, ∀r ∈ IN and
∫ ∞

0

− log f(x2)
1 + x2

dx < ∞ ,

then the distribution of the r.v. X is not uniquely determined by its positive integer order moments.

Theorem A.10 : Let X be a r.v. with an absolutely continuous c.d.f. and p.d.f. f(x) > 0, ∀x ∈ IR+

and f(x) = 0, ∀x ∈ IR−0 , differentiable in IR+, such that E(Xr) < ∞, ∀r ∈ IN , with

f(x) −→x→∞ 0 , − x
f ′(x)
f(x)

−→x→∞ ∞

and ∫ ∞

0

− log f(x2)
1 + x2

dx = ∞ ,

then the distribution of the r.v. X is uniquely determined by its positive integer order moments.

APPENDIX B
A brief note on some numerical issues

McCullagh (1994) claims that the m.g.f.s of the r.v.’s Xn in (5) are numerically virtually undistin-
guishable (for α = 1/2 and n = 0, n = 1) and Waller (1995), states that only the imaginary part of the
c.f. helps in this numerical discrimination. However we should consider that although the numerical
values of such functions may be quite close, they are analytically different for different values of n.
Anyway, there is a clear scale problem when plotting the m.g.f.s in (5). If instead we plot the difference
between the values of the two m.g.f.s and we take the plot far enough in terms of the absolute value of
t it is no longer true that the two m.g.f.s look the same. Actually, for example for α = 1/2, t = 9.9 the
two functions differ by something like 1.507163×1012 while for t = 12.7 they differ by something like
1.343462×1026. We should note that the above are also exactly the differences between the moments
of order h = 9.9 and h = 12.7 for the r.v.’s X0 and X1 with p.d.f.s in (1) for α = 1/2 while if we take
α = 1 the corresponding differences will be roughly the double.

We should be aware that if we do not have enough precision in the computation process we may
not be able to spot such differences since although being quite large in magnitude they are quite small
when compared with the original values.
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